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As shown in previous papers, chain fluctuations in polymer melts can be analysed into three consecutive 
components (local segment re-orientation, reptation within the tight tube and tube renewal). The 
intensity function derived on this basis leads to a series of limiting cases, which can be realized by 
frequency and/or molecular weight variation. The occurrence of the characteristic molecular weights 
/V/As, Mac and M c separating these limits have been verified by the aid of nuclear magnetic relaxation of 
linear polyethylene and atactic polystyrene melts. The Mc-values are equivalent to the critical molecular 
weights as known from rheology. An expression for the zero-shear viscosity in the whole range of 
molecular weights has been derived. 
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INTRODUCTION 

The classical critical molecular weight, Me, is shown, for 
example, by a break in the molecular weight dependence 
of the zero-shear viscosity 1' 2. However, Mc is not the only 
molecular weight indicating a transition between different 
molecular weight dependences of dynamic quantities. In 
previous papers 3'4 it has been shown that the nuclear 
magnetic relaxation times Tz and T2 are influenced by 
additional characteristic molecular weights, which are 
designated MAB and MBc- All three characteristic 
molecular weights can be understood as transitions 
between dynamic limits based on three motional 
components, which will be described in the following. 

A tight tube 4 surrounding a reference chain is defined 
by the space occupied, on average, by this chain in the 
time scale of the local and, therefore, molecular weight 
independent processes. Apart from sidegroup motions, 
local processes are considered to be mainly due to local 
defect diffusion 4'5. Fluctuations of this type are called 
'component A' (Figure 1). Component A is anisotropic 
and, hence, causes a decay of the segment orientation 
correlation function only down to a certain residual 
correlation. The essence of a tube model of this type is that 
the residual correlation can be maintained over times 
many orders of magnitude longer than the time scale of 
component A. In the following the term'tight tube' is used 
to avoid any confusion with definitions of more extensive 
tubes introduced elsewhere 6. 

Defect diffusion is the elementary process which finally 
causes the reptation phenomenon 7 9. Segment displace- 
ments on this basis occur along the axis of the tight tube. If 
they exceed the correlation length of the tight tube 
orientation, the residual correlation of the segment 
orientation left over by component A will decay further 
towards zero 1°. This process is called 'component B' 

(Figure 1). Thus, in contrast to component A, which is 
based more directly on thermal activation, component B 
is considered as a secondary process. 

Reptation finally leads to tertiary processes which are 
competitive to component B. First, reptation can 
represent material transport to or from chain ends, so that 
it causes tube renewal 7 and, hence, the definitive loss of 
correlation to the initial segment orientation. The 
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F i g u r e  / Schematic illustration of a chain in polymer melts. The 
chain is confined into a tight tube formed by the matrix of 
neighbouring chains (circles). The diameter of the tight tube is 
given by the mean fluctuation amplitude of the local (molecular 
weight independent) processes. These are designated as 
c o m p o n e n t  A .  It mainly represents anisotropic re-orientations by 
local defect diffusion. C o m p o n e n t  B is due to further re- 
orientation by reptative displacements around bends of the tight 
tube. C o m p o n e n t  C finally causes the definitive correlation loss 
by tube renewal. The chain threads into a new conformation by 
whole-chain reptation (relevant mainly in the inner section of the 
chain) or by contour-length fluctuation (relevant near chain 
ends). The contour length is the tube length minus the length 
stored in folds. A fold is a lateral extension not entangled by a 
neighbouring chain. Thus, the numbers I to 3 indicate folds 
(growth and shrinkage fluctuation possible), while 4 is no fold 
(no fluctuation degree of freedom). The arrows indicate the 
displacements connected with the diverse chain fluctuations. 
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displacement of the whole chain by material transport via 
defect diffusion from chain end to chain end will be called 
'whole-chain reptation'. 

However, material transport can also occur between 
chain ends and 'folds' (Figure 1) 4. A fold is any lateral 
extension of a chain which does not entangle neigh- 
bouring chains. Folds, therefore, can grow or shrink at 
any position along the tight tube and without strong 
distortion of the matrix. The fluctuation of the chain ends 
back and forth as a consequence of fold fluctuation again 
means that the chain ends thread into a new tube 11. This 
type of 'intemal' reptation will be called 'contour length 
fluctuation' where contour length means the tight-tube 
length minus the lengths stored in folds (Figure 1). 

Both types of tube renewal are comprised within the 
term 'component C'. Note that component C refers to the 
definitive tube renewal process, while the tube renewal 
experienced by the segments situated in a growing or 
shrinking fold is only temporary and can completely be 
reversed within the same entanglement network (Figure 
1). Thus, growth or shrinkage of folds directly contribute 
to component B, but only indirectly to component C as an 
effect of the whole fold ensemble of a chain. 

The three components generally allow the nuclear 
magnetic relaxation behaviour of polymer melts to be 
described 4,~ 2. For this purpose the correlation function of 
the segment orientation is given by: 

G(t) = GA (t)GB (t)G¢ (t) (1) 

and the intensity function: 

1(o9)= f G(t)exp-~"dt 
- - o 0  

(2) 

GA, G B and G¢ are the partial correlation functions of the 
three components, which will be specified later. Here, it is 
assumed that the three components are stochastically 
independent in spite of the hierarchy of elementary, 
secondary and tertiary processes. However, the hierarchic 
sequence of the components means that the components 
are connected with completely different time scales. Any 
correlation between them, therefore, can be neglected. 

The correlation function approach, equation (1), to 
chain fluctuations in polymer melts is opposed by the 
classic relaxation mode concept ~3-1s. The advantage of 
this approach is that infinite series of discrete mode 
expressions are avoided, though the argument occasion- 
ally implies simplifications. 

CORRELATION FUNCTIONS 

Component A refers to local motions such as the diffusion 
of defects over short distances and, if relevant, sidegr0up 
motions. By a computer simulation 4'9 it may be shown 
that in the short-time limit, defect diffusion approximately 
corresponds to the diffusion of a particle between two 
reflecting barriers~6. The reflecting barriers here represent 
the quasi-static ensemble of neighbouring defects. The 
result is a relaxation process, the width of which is 
determined by the mean diffusion time over the distance of 
the reflecting barriers. As the time constants of the other 
components must be longer than this diffusion time, the 
long-time behaviour of component A can be described by 

a simple exponential function with an anisotropy 
constant: 

GA (t) = a 1 exp (-- t/zs) + a 2 (3) 

where a l + a 2 = l ,  zs is an effective time constant 
characterizing the long-time behaviour and the constants 
a t and a2 are determined by the degree of anisotropy of 
component A. Note that only a non-zero value of a 2 
permits the detection of further fluctuation components. 

Component B or reptation around tube bends is 
described byS'X o: 

GB (t)= exp (t/2zt) effc (t/2h) 1/2 (4) 

with zt = 12/2D~ O. h is the mean diffusion time over the 
correlation length l of the tight-tube orientation. Here, it is 
assumed that the chain diffuses with a constant diffusion 
coefficient D~ ° within a stationary tube of infinite length. 
The assumption of an infinite tube is justified because any 
tube renewal process is attributed to component C which 
is of a competitive nature to component B. The station- 
arity of the tight-tube conformation is more problematic 
as it contradicts the growth or shrinkage of folds as 
discussed previously. Rather the fluctuation of a fold in 
principle can contribute to component B. However, the 
correlation length of the fight-tube orientation is expected 
to be so short, that reptative displacements around tight- 
tube bends will be fast compared with fold fluctuation 
(also, it is unlikely that the reference segment is situated in 
a fold at all). Note that equation (4) implies the possibility 
that the segment has returned to its initial tight tube 
orientation after time t. Thus, GB decays extremely slowly 
allowing even tube renewal processes to be observed in 
spite of the absence of any additional anisotropy term. 

Tube renewal (component C) leads to the definitive loss 
of correlation to the initial segment orientation. As shown 
in ref. 4 the two mechanisms contributing to component C 
dominate in different sections of the chain (Figure 2). A 
fraction Pr of the segments is situated in the range x, < x < 
Lo-Xr of the curvilinear tight-tube co-ordinate, where 
whole-chain reptation is the dominating tube renewal 
mechanism. Lo is the tight-tube length, x, is half the mean 
contour length fluctuation, which provides the 
dominating tube renewal process outside of that range. 

The partial correlation functions of the whole-chain 
reptation mechanism and that due to contour length 
fluctuation are designated by C~ and Co, respectively. 
These functions represent averages over their regions of 
dominance as shown in Figure 2. Thus, the average 
correlation function characterizing the total component 
C is given by: 

Gc(t)=pcCc(t)+PrCr(t) (5) 

with Pc = 2xr/Lo and pr = 1 -  pc. 
The formation of the averages implied in equation (5) is 

justified for considerations of the proton spin-lattice 
relaxation time T~. Here, spin diffusion ~ 7 guarantees that 

c~ c~ c~ 
I I I I 

0 xr Lo-xr Lo 

Figure 2 Distinction of three chain sections concerning the tube 
renewal mechanisms 
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the average is observed over all relaxation heterogeneities 
along a chain, so that the average formally can already be 
carried out on the level of the correlation functions. With 
dilute nuclei and with the transverse relaxation time this 
argument no longer holds. Rather, a distribution of 
correlation functions should be used leading to a distribu- 
tion of relaxation times. 

As shown later, either the first or the second term of 
equation (5) can be neglected for M~>M~ and M < M ~ ,  
respectively, where M¢ is the classical critical molecular 
weight ~'2. Thus, this objection is irrelevant in these 
limiting cases. If M ..~ M~, however, both terms will be of 
equal importance and strongly non-exponential T2- 
relaxation curves are expected. Later, there is a brief 
discussion of an experimental result fitting this prediction. 

For tube renewal by the whole-chain reptation 
mechanism the correlation function is given by: 

C,(t) = (1 - {P(x, t )+P(Lo-x, t) 

- P ( x ,  L o - x ,  t)} )= (6) 
The average concerns the curvilinear tight-tube co- 
ordinate x in the range Xr < x < Lo - Xr (Figure 2). The part 
of the equation within the braces represents the prob- 
ability that either one of the two chain-ends or both have 
reached the initial position of the reference segment 
during the interval t. The complementary probability 
averaged over all reference segments thus represents the 
correlation function C,(t). P(x,  t) and P ( L o -  x, t) con- 
sequently are the probabilities that one chain end attains a 
distance of at least x or (Lo -x ) ,  respectively, at least once 
during t. P(x,  Lo - x, t) is the probability that both chain 
ends do so. 

Thus, the part of the equation within the braces in 
equation (6) represents the equivalent of a one- 
dimensional particle diffusion problem with a two-sided 
absorbing wall. Here, the displacements of the chain ends 
are considered. Alternatively, it is possible to treat the 
diffusion of the reference segment which then has to be 
considered to migrate between two absorbing walls. This 
assumption has been used in ref. 18. However, this type of 
treatment results in an infinite series of diffusion modes 
which is undesirable here. 

Equation (6) can be simplified by realizing that 
P(x, L 0 - x, t) < 1 for t < r L and P(x, Lo - x, t) .~ 
P(x, t )P(L o - x, t) for t > z L, where zL is the mean diffusion 
time over a curvilinear displacement in the order of Lo. 
Replacing, furthermore, the average by the expression for 
the central chain segment, which is justified in view of the 
relatively weak x-dependence in the section x ~ < x <  
L o - x r ,  thus4 '19  : 

Cr(t )~ ([1 - P(x,  t ) ][ l  - P ( L o -  x, t)])= 

~ / t j  
(7) 

with r~r = (L0-  2Xr)2/TrD1 (D1 curvilinear whole-chain 
diffusion coefficient, ~ numerical factor of the order of i0). 

To obtain the intensity function, the total correlation 
function, equation (1), has to be Fourier transformed 
(equation (2)). For this purpose the partial correlation 
function, equation (7) was unsuitable. Therefore, it was 
replaced by an exponential term: 

Cr (t) ~ exp (-- t/zr,) (8) 
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where z~ now implies a slightly modified numerical factor 
]2 r which is irrelevant for scaling-law considerations. 
Initially, the simplification step from equation (7) to 
equation (8) appears to be severe. However, a numerical 
comparison of the total three-component intensity 
function based on equations (7) and (8), respectively, 
showed that perfect coincidence can be attained simply by 
appropriately choosing the numerical factor ~19. 

The correlation function for tube renewal by contour 
length fluctuation, i.e. for segments virtually situated in 
the outer chain segments, the assumption 4 is made that: 

Cc (t) = exp ( -  t/r~) (9) 

with Z~r=4X~/?¢D~l°). D] °) is the curvilinear diffusion coef- 
ficient of the outer chain sections which is effective in the 
time scale of  contour length fluctuation. Note the 
difference to D x which concerns displacements of the 
whole chain, y~ is again a numerical factor of the order of 
10. Exponential correlation functions of this type are also 
used in connection with density fluctuations 2°'1a, which 
are equivalent to contour length fluctuation. 

The mean contour length fluctuation is4: 

2X r = (LoAo)  1/2 (10) 

where A o is the mean tube length per fold. Thus, by 
combining equations (1), (3)-(5), (8) and (9), the total three- 
component correlation function is obtained in a version 
which is suitable for Fourier transformation: 

G(t) = [al exp ( -  t/r,) +a2] 

x exp (t/2zt) erfc (t/2h) °'s 

x [(Ao/Lo) w2 exp ( -  t/Z~r) + (1 - xflA o ~ )  

x exp ( -  t/Z~r)] (11) 

The time constants are of different orders of magnitude as 
a consequence of the hierarchic sequence of the 
components. Especially it holds for rs < z~, Zrr. Then, the 
intensity function is 4"12: 

4 
/(~:o) = ~ ?j[2r~ j~ + z~J~3/zzf 1/2(1 -F g (]3)1/2] 

j = l  

+ {K (s32 TA- ~(J).2 ~c "l-  1 ]~(3)'x "-[- z~J) 1/2Zl- 1/2 

x [(1 +K~Jg) 1/2 + ogz~S~(K ~s)- 1)Ws]} (12) 

where K ° ) =  (1 +(ooz~J~)z) 1/2 

~?)=~r  ~ 

71 = al (Ao/Lo) 1/2 

72 =a l  (1 - (Ao/L 0) 1/1) 

73 = a2(Ao/Lo) 1/z 

Y4 =aE(1 - (Ao/Lo) l/z) 

Depending on to and the time constants in equation (12), 
different limiting cases can be derived. As the diverse time 
constants have different molecular weight dependences, it 
is possible to realize the limiting cases by the appropriate 
choice of the chain length. Then, it is possible to attribute 
characteristic molecular weights to the case transitions as 
shown later. 
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LIMITING CASES AND CHARACTERISTIC 
MOLECULAR WEIGHTS 

From equation (12) a series of limiting cases can be 
derived. The general condition representing the hierarchy 
of the three-component model is" "~r,C ,trr >~ T! >~ Ts. Additional 
conditions are given for the following limits: 

Case 1: COCr 4 1  and ~,a~ 1/2 >>'~4"Crr 1/2 

l(co),~2a2(2Ao~FC~r~ ,,2 
\ L o  y 

(13a) 

This case is valid for small frequencies and short chain- 
lengths. It is then component B and C (tube renewal 
mainly by contour length fluctuation) which determine 
the intensity function. If tube renewal is governed by the 
competitive mechanism, i.e. whole-chain reptation, then: 

Case 2: cozr,<l and ~3"~cl/2<~4Trr 1/2 

I(c0)~2a2( ( L 0 ) ) 1 -  A° 1/2 (2ZlZ~) 1/2 (13b) 

This is still valid at small frequencies, but longer chains are 
required to realize this situation. Note that in both cases 
the effective time constant appears as the geometric 
average of the time constants of components B and C. 

Higher molecular weights and/or greater frequencies 
lead to: 

Case 3: coz~ >> 1, coz~ >> 1, ~oz, ,~ 1, co h ,~ 1 

1(o9) ~ (2al z,) + 2a2co - 1/2z~/2 (13c) 

The first term is minor provided the frequency is suf- 
ficiently low. Then it is component B alone which 
dominates in the intensity function. 

The following cases refer to essentially higher 
frequencies allowing consideration of the condition 
coz I >> I : 

Case 4: CO~¢r >> 1, coz~ >> 1, o~T,,~. 1, coz z >> 1 

I (~) ,~ 2al zs + a2~ - 3 / 2 " C |  - 1/2 (13d) 

It is now components A and B which determine the 
intensity function. Depending on the numerical values of 
at and a2, the frequency and the chain length, situations 
might arise where either the first or the second term 
dominates. Thus: 

Case 4a: I(o~) ,.~a2o - 3/2.~/1/2 (13e) 

and 

Case 4b: I(o~) ~2at  zs (13f) 

Increasing the frequency and/or the molecular weight, in 
principle provides the possibility to attain all cases 
subsequently. The respective characteristic molecular 
weights are designated as follows: 

Case 1-2: Mo 

Case 2-3: MBc 

Case 4a-4b: MAB 

The subscripts indicate the components involved with the 
transitions. Clearly, the case transitions indicated by the 
characteristic molecular weights will partially depend on 
frequency and temperature. MBc and MAB (but not Me) 
consequently will be functions of these experimental 
parameters. As the components and the mechanisms are 
characterized by different dependences on the chain 
length, it is expected that the characteristic molecular 
weights are shown by clear breaks in the molecular weight 
dependence of quantities based on the intensity function. 

EXPERIMENTAL 

The n.m.r, spectrometers and the methods used for this 
study have been described elsewhere s. The (linear) poly- 
ethylene fractions (PE) in part were given by Dr 
Goldbach, Hills AG, Marl, FRG and Dr Asbach, Experi- 
mentelle Physik, Universit/it Ulm. The rest was purchased 
from Knauer, West Berlin, Polymer Laboratories, Shaw- 
bury, UK and Humphrey, North Haven, Conn., USA. 
The ratios of the weight and number averages of the 
molecular weights, Mw/M,, ranged from 1.1 to 1.5. Results 
from gel permeation chromatography of some of the 
samples have been published previously 22. The (atactic) 
polystyrene samples (PS) were either given by Dr Miin- 
stedt, BASF, Ludwigshafen or purchased from Knauer, 
West-Berlin and Pfannenschmidt, Hamburg. The ratio 
Mw/M, was always ~< 1.1. Samples of 1 cm 3 were pressed 
in a cylindric form and evacuated at least overnight, 
typically 2 or 3 days. 

NUCLEAR MAGNETIC RELAXATION TIMES 

The existence of the predicted characteristic molecular 
weights Me, MBc and MAB can be verified by the nuclear 
magnetic relaxation times T~ and T2 which are direct 
functions of the spectral density 4'17. Figure 3 shows the 
low-frequency data for polyethylene melts. Two breaks 
corresponding to Me and MBc are evident, where the Mo- 
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Figure 3 Molecular weight dependences of proton relaxation 
times ?'1 (30 kHz) and ?'5 in polyethylene (T~[ is the decay time to 
1/e of the transverse magnetization measured by spin--echo 
techniques). The different slopes are interpreted by cases 1, 2 and 
3 (see text). O, 10 x T1 ' 200°C, 30 kHz; A, 10 x T1, 150°C, 
30 kHz; O, T~, 200°C, 90 MHz; [ ] ,  T~, 150°C, 90 MHz 
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values are close to those reported in rheological 
studies ~' 2 

Note that the frequencies relevant for the T~-data are 
considerably higher than those relevant for T2; in 
consequence the Mac-values of the Tl-data are less than 
those of T 2 as predicted by equation (13c). 

The slopes correspond to molecular weight 
dependences of the relevant parameters4: 

z~ = x,M °'° 
t l 0 5 + 0 3  

T l ~ K  l l V l w "  --  " 

c t C e / ~ ' 1 . 7  + 0 3  
"fr ~ "-r-'= w 

r . r ~Ar3.0+0.3 
T r  ~ I ' i ' r lV l  w - (14) 

The frequency dependence 4'12'22 of T 1 allows 
estimation of the order of magnitude of the constants x,, 
K l, x~ and x~, so that a numerical computer fit is 
unnecessary. In the temperature range of the data of 
Figure 3, t C s , ~ 1 0 - 1 0 S ,  K / , - ~ 1 0 - 1 0 S ,  t C ~ 1 0 - 1 a S ,  ~ C ~  

10 -~ss. The residual correlation of component A is 
approximately a 2 = 0.06. 

Below M e , the molecular weight dependence of free 
volume 2a is also significant so that the power law given for 
z~ should be considered to be unspecific. The molecular 
weight dependences of the curvilinear diffusion coef- 
ficients D 1 (equation (7)) and D~ °) (equation (9)) for mean 
square displacements of the segments of the order of L 2 

. . I )  

and x 2, respectively, can be derived from equation (14). In 
view of the additional free-volume M-dependence 
affecting D~ °), it is evident that these results are completely 
compatible with the intrinsic power laws derived from 
model considerations 4'9 : 

D 1 ~ M ~  1 
(15) 

D(t °) ~ M£ o. 5 

IO 3 

IO L 
c- 
O 

0 

Io-'- ( 2 : ~  
IO 5 IO 4 IO 5 IO 6 IO 7 

Mw 
Figure 4 Molecular weight dependences of proton relaxation 
times T 1 (20 kHz) and T~ in polystyrene. The different slopes are  

interpreted by cases 1 and 3 (see text). As M c is close to the 
values of MBC, case 2 could not be resolved. A comparison with 
curves calculated on the basis of a somewhat simpler version of 
the complete three-component intensity function can be found in 
ref. 3. I-I, T1,200°C, 20 kHz; i ,  T~, 200°C, 40 MHz; ©, T~, 
174°C, 90 MHz; 0, T~, 150°C, 40 MHz 
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Figure 5 Molecu lar  we igh t  dependence of T 1 at 40 and 90 M H z  
in polystyrene. The di f ferent slopes are interpreted by  cases 3, 4a 
and 4b (see text) .  A t  200=C, case 4a obv ious ly  is not resolved. 
The fi l led symbols indicate s l ight ly non-exponent ia l  relaxation 
curves, wh ich  have been approx imate ly  evaluated by  a single 
(average) exponent ia l  funct ion.  M c obv ious ly  has no inf luence 
because componen t  C is ineffect ive in this f requency/ tempera-  
ture/molecular  we igh t  range. O, 5 x  T1, 150"C, 40  MHz;  I-I, T 1, 
200°C, 90 MHz;  A ,  T 1, 2000C, 40 M H z  

Figure 4 shows low-frequency relaxation data 
measured with polystyrene fractions. Only one break in 
each of the M-dependences is evident. Clearly, case 2 is 
not resolved. Rather, a direct transition is observed from 
case 1 (tube renewal by contour length fluctuation 
combined with component B) to case 3 (component B 
alone). The explanation for this finding is that the 
frequencies relevant for the relaxation times are so high 
that in this case MBc ~< Me. The prediction is that case 2 
would be resolved if the experiment could be carried out 
for v < 103 Hz. 

The M-dependences of z ¢. derived from the case 1 
formula, leads to very high exponents 4 due to the strong 
influence of free volume in this polymer example 2a. The 
behaviour of z~ corresponds to the power law found for 
polyethylene. 

Figure 5 finally shows the high-frequency data for 
polystyrene. Here, case 3 is again evident, but now shifted 
to the lower end of the Mw-scale. Reduced frequencies and 
temperatures lead to the inverse power-law predicted by 
case 4a. (This transition is an equivalent to the symmetric 
V-type curve of the well-known Tl-minimum I ~.) At high 
molecular weights case 4b is attained, which is governed 
by the molecular weight insensitive component A. The 
characteristic molecular weight, MAB, is attributed to this 
transition. Note that case 4a is not resolved at 200°C. 
Rather, there is a direct transition from case 3 to case 4b at 
this temperature. 

For  200°C: 

Zs = tCs M °' o 
. ~ A r 0 . 5 + 0 1 5  

TI ~---/~1/VI w - ' 

c . c a A r 2 . 8 + 0 . 2  
T'r ~ K r l V l l  w - 

(16) 

The order of magnitude of the constants are ~:,~ 10 -9 S, 
X/~10 -11 S, tC~10-16S.  Note that zs is an effective 
quantity which also refers to phenyl group motions. The 
residual correlation of component A is approximately 
a 2 = 0.05. 
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ZERO-SHEAR VISCOSITY 

Zero-shear viscosity is determined by tube renewal 
(component C) alone 25. Inserting equation (5) with the 
expressions for C¢(t) and C,(t) into Doi's correlation 
function formula for the zero-shear viscosity r/leads to: 

~/=KiL20(1 /Ao \° 's \3 / )/o, ( . . )  

where K 1 and K2 are constants with respect to chain 
length. The characteristic tube length Eo (corresponding 
to Me) is then defined as the transition from a region 
where the second term dominates to that where the first 
term governs the viscous behaviour. 

With the proportionalities in equation (15), therefore: 

r/= KrL3o(1 - (Ao/Lo)°'5) 3 + KCA~'SLo 

or q ~ Lo (Ao < Lo < Eo) (1 7b) 

~L36 * (Eo<Lo<lO2Eo) 

i.e. the well known power laws are obtained for the zero- 
shear viscosity observed after eliminating the additional 
chain length dependence arising from free volume 1'2'24. 
K, and K c are constants. The second proportionality 
implies an approximation 11 of the first term in equation 
(17a) by a power law effective in the range indicated. The 
quality of this approach is demonstrated in Figure 6. At 
even higher tube lengths a limiting power law Is is 
expected: 

r/,-~ Lao (Lo ~> 102Eo) (18) 

which, however, appears to be beyond the experimental 
accessibility. 

With equations (17) and (13) there is a common basis for 
a discussion of nuclear magnetic relaxation times and 
zero-shear viscosity. A critical test of the fluctuation 
scheme is, therefore, to derive the molecular weight 
dependence of component C from n.m.r, relaxation times, 
to calculate the viscous behaviour on this basis and to 
compare it with rheological data, as shown in Table 1. The 
comparison shows that the model expressions are able to 
explain simultaneously the results of both methods, 
though they are influenced by the three components in a 
different way. Note that the molecular weight 
dependences in Table I partially imply the additional M- 
dependence of free volume. The quantity mainly sensitive 
to free volume is D~ °) 4. Note also that as a consequence of 
free volume, below Mc no pure power laws are valid. 
Rather, the proportionalities given in Table 1 represent 
average dependences in the relevant M-ranges. 

DISCUSSION AND CONCLUSIONS 

The fluctuations relevant for chain dynamics in polymer 
melts are more complicated than hitherto assumed. 
Especially there is a variety of motional components and 
limiting cases which have to be considered in this context. 
The observation of the characteristic molecular weight 
MBc as predicted by the three-component model and the 
successful 'translation' of the TI(Mw) and T2(Mw) 
relations to ~/(Mw) strongly supports the scheme 
developed in a series of recent papers 4,s'x°A2A9. 

The explanation of the characteristic molecular weight 
Mc as a transition between two limits of tube renewal 
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Figure 6 Chain-length dependence of the zero-shear viscosity. 
The points have been calculated with equation (17b) assuming 
K r=Ke=Ao= l .  r/o refers to Lo=& o 

Table 1 Comparison of the molecular weight dependences of the 
zero-shear viscosity derived from n.m.r, relaxation data and 
rheologically measured. The power laws below M c must be 
considered to represent average molecular weight dependences 
i ncl udi n g f ree-vol u me effects 

e (°C) 

calc. f rom 1"/directly 
n .m .r. data measured 
(this work) (PS 26, PE 27-30) 

PS (M < M c) 140 - ~ M  4.4 ±0.3 
PS (M < M c) 150 ~M4w.S±0.3 - 
PS (M < M c) 155 -- ~ M  4 .o 
PS (M < M c) 174 ~ M ~  9 
PS (M < M c) 190 - ~ M  2.9 
PS (M < M c) 200 ~M2w.3 - 
PS (M < M c) 217 - ~ M  24 

PS (M > M c) 8 --  ~ M  3'4 

PE (M < M c) 200 ~M1~:24 ~ M  1.67 

PE (M -> M c) 8 ~ M ~  1 ~ M  3.4 
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without any structural change makes it plausible that this 
transition is not accompanied by any discontinuity. This 
especially holds for the centre of mass self-diffusion 
coefficient TM. Rather, a three-section behaviour is 
proposed with respect to tube renewal (Figure 2). As 
mentioned previously, the three sections should lead to 
strong deviations of the transverse relaxation curves on 
approaching Me. In fact, this tendency has been observed 
with polystyrene (PS 38 000 in Figure 1 of ref. 4). 
Unfortunately, the distributions of chain lengths also lead 
to non-exponential decays 22'3z, so that this finding does 
verify but not prove the predicted behaviour (despite the 
small ratio Mw/M,= 1.06 of this sample). The same 
problem arises, in general, in trying to analyse the shape of 
the transverse relaxation curve in components due to 
different dynamic restrictions 32'33. Additional experi- 
ments distinguishing the inner and outer chain sections, 
therefore, would be desirable in this context. Partial 
deuteration of the chains would be a suitable method for 
such a separation. 

Several components of chain fluctuations have been 
defined. It is a crucial point that component A is of an 
anisotropic nature. Only the non-vanishing constant a2 
in equation (3) allows observation of further non-local 
processes. Anisotropic fluctuations are due to any type of 
restraints of the surrounding matrix. It is, therefore, this 
component which defines the diameter of the tube repre- 
senting these restraints. The degree of anisotropy clearly 
indicates that the tube diameter must be near the mean 
nearest chain distance, so that component A involves any 
type of kink, crankshaft or torsional motion of a few 
segments which is compatible with this tube diameter. 
Only such a tight tube is suitable for the description of the 
n.m.r, results. 

A tube of a diameter corresponding to the 
Doi-Edwards model 6 and the random coil assumption of 
the chain inside the tube contradicts the experimental fact, 
that non-local motions can be observed by n.m.r., i.e. by a 
method which directly 'sees' single segments rather than 
the whole chain or even the physical network. Note that 
the time scale of component A is many orders of 
magnitude below that of tube renewal. The latter 
nevertheless influences the n.m.r, relaxation times. 

The separation of the diverse components can also be 
related to diverse scales of diffusive displacements. 
Component A virtually is not connected with trans- 
lational segment displacements. Rather it concerns re- 
orientations about the chain axis (Figure 1) caused, for 
example, by diffusing defects. The relevant defect displace- 
ments are of the order of a few segment lengths 4'5'9. 

Translational displacements, however, are relevant for 
components B and C. Computer simulations showed 4'9 
that the effective time and chain length dependences of the 
segment displacements depends on the scale considered. 
Hence, different curvilinear segment diffusion coefficients 
effective for the diverse processes are identified. 

Component B refers to mean displacements of the order 
of the tight-tube orientation correlation length I. The 
effective diffusion coefficient, defined by: 

12 
D~ ° = -  (19) 

2zt 

is then proportional to M£ o.5_+ 0.3 according to equations 
(14) or (16). D~ ° is insensitive to free-volume factors even at 
short chain-lengths 4. 

Polymer melt dynamics: R. Kimmich 

Tube renewal by contour length fluctuation as the first 
part of component C is connected with larger displace- 
ments. The corresponding diffusion coefficient is defined 
(equation (9)) by: 

D (°) = 4x2 (20) 
1 ~c~r ~ 

The relevant displacements are now of the order of xr 
(equation (10)). For short chain-lengths, the molecular 

,~(o) can be weight dependence oI w 1 affected significantly by 
free volume 4. 

Tube renewal by whole-chain reptation as the second 
part of component C is based on displacements of the 
order of the chain length. The curvilinear whole-chain 
diffusion coefficient (equation (7)) is: 

(L o -  2Xr) 2 
D x - (21) 

~r~rr 

Model considerations 7'9 lead to the proportionality 
D x ~ M - l ,  which is compatible with equations (14) and 
(21). 

Contour length fluctuation is considered to be based on 
growth and shrinkage of folds (Figure 1). It may be 
argued in context with diffusion of polymer stars 34 that 
fold formation is connected with a strong decrease in 
conformational entropy. In the present case, however, 
linear chains are considered, and fold formation at any 
position along the tube is effective for contour length 
fluctuation. Folds partially decouple the dynamics of the 
fragments between them. Additional degrees of trans- 
lational freedom arise and, hence, the additional thermal 
energy connected with these translational degrees of 
freedom can compensate the reduction of conformational 
entropy. 

An empirical indication of the partial decoupling by 
folds is given by melt transition data of straight-chain 
alkanes and their extrapolated values to infinite chain 
lengths 35. The melting temperatures at 0.1 MPa obey: 

Tm Tm ~ 

where n(> 10) is the (odd) number of carbon atoms per 
chain and Tm ~ = 414.6 K is the melting temperature in the 
limit of infinite chain lengths. The corresponding 
transition entropies obey: 

with Asoo =9.94 J/K mol CH 2. The transition data also 
depend of course on the thermodynamic state of the 
crystals just below the melting temperature. For 
discussion purposes, however, it is sufficient to consider 
the crystalline state as a reference state per se for all chain 
lengths. 

The fact that the transition data already approach their 
limits for infinite n for carbon numbers of the order of 
magnitude of 10 proves that then the units relevant for the 
melting transition are shorter than the total chain. The 
almost linear dependence of the transition entropy on the 
chain length also indicates approximately independent 
units. This is expected for chains consisting of dynamic- 
ally decoupled fragments with an average length of the 
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order  of magni tude  of 10 methylene segments. Fo ld  
f luctuat ion might also explain the lateral displacements 
recently concluded from neu t ron  scattering 
experiments a6. 
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